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ABSTRACT

Forecasters often monitor and analyze large amounts of data, especially during severe weather events,

which can be overwhelming. Thus, it is important to effectively allocate their finite perceptual and cognitive

resources for the most relevant information. This paper introduces a novel analysis tool that quantifies the

amount of spatial and temporal information in time series of constant-elevation weather radar reflectivity

images. The proposed Weather Radar Spatiotemporal Saliency (WR–STS) is based on the mathematical

model of the human attention system (referred to as saliency) adapted to radar reflectivity images and makes

use of information theory concepts. It is shown that WR-STS highlights spatially and temporally salient

(attention attracting) regions in weather radar reflectivity images, which can be associated with meteoro-

logically important regions. Its skill in highlighting current regions of interest is assessed by analyzing the

WR-STS values within regions in which severe weather is likely to strike in the near future as defined by

National Weather Service forecasters. The performance of WR-STS is demonstrated for a severe weather

case and analyzed for a set of 10 diverse cases. Results support the hypothesis that WR-STS can identify

regions withmeteorologically important echoes and could assist in discerning fast-changing, highly structured

weather echoes during complex severe weather scenarios, ultimately allowing forecasters to focus their at-

tention and spend more time analyzing those regions.

1. Introduction

The network of Weather Surveillance Radar-1998

Doppler (WSR-88D) consists of 158 high-resolution,

S-band, Doppler polarimetric weather radars operated

by the U.S. National Weather Service (NWS) (Whiton

et al. 1998), theU.S. Air Force, and the Federal Aviation

Administration. The WSR-88D surveils the atmosphere

by mechanically rotating a parabolic antenna using

one of several predefined scanning strategies known as

volume coverage patterns (VCP). VCPs for nonclear-

air conditions take 4–6min to complete, which defines

the temporal resolution of the WSR-88D network.

Forecasters of the NWS rely heavily on data from the

WSR-88D to observe weather phenomena, and more

specifically to identify potentially severe weather

(Andra et al. 2002). Stormsmay have remarkably different

structures and can evolve in unpredictable ways. In par-

ticular, severe storms (e.g., supercell thunderstorms or

hailstorms) can evolve in a matter of a few minutes

(Heinselman et al. 2008) and potentially result in the

loss of lives and property. Recent experiments strongly

suggest that radar data with high temporal resolution

could be beneficial in the warning decision process of

NWS forecasters, leading to increased warning lead times

for severe storms (Bowden et al. 2015; Heinselman et al.

2012). However, radar data with higher temporal reso-

lution would increase the already large amount of data

that forecasters have to analyze.

Forecasters monitor and process data from many dif-

ferent sources during severe weather situations, which can

be overwhelming. For example, during a typical tornado

outbreak situation, numerous convective supercell storms
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can form with only a few of them producing tornadoes.

This type of severe thunderstorm usually has distinctive

radar signatures (hook echo, velocity couplets, etc.) that

evolve quickly and attract the forecaster’s attention. At-

tention is an instinctive biological mechanism that every

living animal and human has; it enables us to selectively

focus on the incoming stimuli and discard less interesting

signals (Mancas et al. 2012). About 80% of the informa-

tionwe receive every day is fromour visual system (Li and

Gao 2014). The human retina can receive an equivalent of

up to 10 billion bits of information per second (Raichle

2010); nevertheless, the cortex has only approximately

20 billion neurons (Shepherd 2003; Koch 2004). There-

fore, the amount of information we receive significantly

exceeds the amount of information we can actually store

in our brains, and therefore we are routinely faced with

information overload. This very same problem is exacer-

bated in weather forecasters who have to adopt a con-

ceptual model of the atmosphere and analyze information

from multiple sources (e.g., radar, satellite, surface ob-

servations, model output) simultaneously when making

warning decisions. In addition to capacity limitations, our

brains are constrained by their processing capabilities, and

it becomes unattainable to simultaneously perform an

efficient analysis of all the visual information (Li and Gao

2014). Even though our brains have these limitations, we

are still able to accomplish highly dynamic tasks thanks

to our attention system. Through the attention system,

we can enormously reduce the amount of information

flooding our brains and focus only on important sources

of information. Attention can be defined as the allo-

cation of cognitive resources on sources of relevant

information. There are many types of attention, and

they are usually classified by the way in which they make

use of cognitive resources. According to Sohlberg and

Mateer (1989), attention types can be classified as focused,

sustained, selective, alternating, and divided. We are in-

terested in the selective attention, which is defined as the

quality to selectively maintain cognitive resources on a

specific conspicuous object or region while ignoring all

other competing stimuli (Li and Gao 2014). Focusing at-

tention on relevant sources of information becomes cru-

cial in overwhelming tasks, such as weather forecasting

and warning.

A bio-inspired model of saliency (Itti et al. 1998, 2005;

Tsotsos et al. 2005) has been applied to several fields

(Frintrop et al. 2010; Itti and Koch 2001). For example,

Li et al. (2011) used visual saliency to detect interesting

regions in images and improve their compression by dy-

namically adjusting the resolution based on the degree of

interest. Maddalena and Petrosino (2008) developed a

saliency-based technique that separates foreground and

background components for scenes of stationary cameras

used in video surveillance applications. In this work, sa-

liency is used to highlight regions with high temporal and

spatial information in weather radar reflectivity images.

That is, the proposed Weather Radar Spatiotemporal

Saliency (WR-STS) uses a computational model of the

human’s selective attention system based on information

theory that seeks to resemble a forecaster’s visual ex-

amination of weather radar reflectivity images. Such a

mathematical model cannot capture the forecaster’s

complex conceptual model of the atmosphere; however,

we postulate thatWR-STS could help focus a forecaster’s

attention, since the structured and fast-evolving regions

highlighted by WR-STS agree with regions of meteoro-

logical importance. Automatically identifying salient re-

gions in weather radar images could be useful for several

applications. For instance, WR-STS could assist human

forecasters throughout the warning decision process as

an additional nowcasting-like tool that highlights re-

gions with higher saliency, especially in complex severe

weather scenarios. Instead of performing manual ob-

servations of all the radar data collected in a volume

scan, WR-STS could aid forecasters by eliminating the

need to look at some elevation angles, thus increasing

the time available for looking at important regions or

data from other sources (e.g., weather stations and

satellites). Furthermore, it could be applied to adaptive

weather sensing (Reinoso-Rondinel et al. 2010; Torres

et al. 2016), whereby regions with high saliency are

updated more frequently than other less informative

regions. These faster updates of quickly evolving, finely

structured storm regions could aid in the interpretation

of severe weather phenomena and could provide in-

creased confidence in the radar data during the warning

decision process.

The rest of the paper is organized as follows. Section 2

presents definitions and concepts associated with visual

saliency and its activation function. In section 3,WR-STS

is described mathematically, and its characteristics and

implementation parameters are discussed. In section 4,

data from a severe storm outbreak are processed using

WR-STS, and the results are qualitatively analyzed. In

section 5, the performance of the proposed metric is an-

alyzed by correlating it with warning polygons issued by

NWS forecasters during the development of the event.

A quantitative analysis is carried out, and results are drawn

from this discussion. Section 6 summarizes the conclu-

sions of this work, reviews the limitations of the model,

and provides recommendations for future work.

2. Visual saliency

The existence of an intuitive mechanism in the brain

(and a visual map) that can depict conspicuous regions
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in the field of view of the human visual system was

originally proposed by Koch and Ullman (1987). In

1998, Itti and Koch developed the first computational

implementation of a bottom-up, task-independent, se-

lective visual attention model (Itti et al. 1998) that is the

basis for most saliency models, including WR-STS.

Their model has three main steps. First, three different

visual features (color, intensity, and orientation) are

computed from the input image. Second, a scale de-

composition is applied to each feature map, and the

outcome is a set of 12 feature maps (3 features, each

with four scales). The third step is an across-scale

combination followed by an activation (also called

normalization) that highlights unique attributes from

the feature maps. Last, a weighted linear combination

of the three remaining activated-and-scale-combined

features is made to arrive at the final spatial saliency

map. This initial implementation of a selective atten-

tion model was very successful in providing better

predictions of human eye fixations than simpler

methods (e.g., chance or direct application of en-

tropy), and inspired many research efforts that re-

sulted in several saliency models. Different saliency

models involve very different technical approaches,

but they are all derived from the central concept of

information innovation in some context (Riche et al.

2013). Popular saliency models include the Local and

Global Saliency (LGS) by Itti et al. (1998), the Co-

variance Saliency (CovSal) by Erdem and Erdem

(2013), the Graph-Based Visual Saliency (GBVS) by

Harel et al. (2007), the Boolean Map–Based Saliency

(BMS) by Zhang and Sclaroff (2013), the bottom-up

algorithm for global rare feature detection (RARE2012)

by Riche et al. (2013), and the Attention Based on In-

formation Maximization (AIM) by Bruce and Tsotsos

(2007). There are several technical differences among

these methods, but the main difference is in their ac-

tivation functions. As we shall discuss in more detail in

the next section, the purpose of the activation function

is to pick out unique attributes from the feature maps.

LGS uses a deterministic function as the activation.

CovSal uses a covariance-based activation technique to

obtain the activated feature maps. GBVS constructs

fully connected graphs over each feature map and as-

signs weights between nodes of the graph. Graphs are

then treated as Markov chains to compute the activa-

tion maps, and maps are combined across features to

obtain the final map. BMS computes saliency using the

Boolean map theory of visual attention (Huang and

Pashler 2007) with Bayesian-like activation functions.

Finally, both RARE2012 and AIM use information

theory type of activation functions (i.e., Shannon’s

entropy).

Saliency models can be divided into two broad cate-

gories based on their applications: bottom-up and top-

downmodels. In bottom-up saliencymodels, attention is

driven by salient stimuli without preassumptions (i.e.,

memory free), independent from prior knowledge.

Bottom-upmodels use low-level features extracted from

the image, such as intensity, contrast, and orientation.

Once those features are generated, the models look for

rare, contrasted, novel, more informative (less com-

pressible) regions that maximize the amount of visual

information. In other words, they all intend to find

unusual characteristics in a given context: in the spa-

tial, temporal, or both dimensions. On the other hand,

saliency can also be guided by memory-dependent

mechanisms with the use of prior or learned knowl-

edge that is ingested into the model. These are called

top-down saliency models, and they can dramatically

increase the performance due to the prior knowledge

incorporated in the model. It could be argued that the

features of different weather phenomena in radar im-

ages may provide useful prior knowledge in top-down

saliencymodels (e.g., it is more likely to observe severe

thunderstorms in areas of high reflectivity). Similarly,

task-specific features could be extracted to improve

the detection of different types of salient areas (e.g.,

snow, freezing rain, and even convergence lines).

However, the features observed by weather radar can

widely vary depending on the radar acquisition pa-

rameters (e.g., spatial sampling, temporal resolution,

variance of estimates) and the characteristics of the

storms (e.g., intensity, orientation, distance from the

radar). Thus, this proof-of-concept implementation

adopts the simpler bottom-up saliency model; perfor-

mance improvements based on top-down saliency

models are left for future work.

As mentioned before, the application of visual sa-

liency can be used to distribute the finite resources on

the most relevant regions of an image. The spatial

activation of the feature maps is a key step to accom-

plish this. Figure 1 (adapted from Itti et al. 1998) de-

picts this concept through an example in which the

visual stimulus contains only a single salient feature:

the red line oriented vertically among many horizon-

tally oriented red lines. Each red line, regardless of its

orientation, produces a maximum value in the inten-

sity feature extraction. As a result, the intensity map

consists of many peaks with the same value. In this

case, it is expected that the activation of the intensity

map will lead to a result indicating no information. On

the contrary, the orientation map has a slightly higher

peak in the region around the vertically oriented line.

It is expected that the activation function can amplify

this peak while suppressing the others. In other words,
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an ideal activation function would highlight only re-

markable peaks from each feature map, picking out

the most spatially informative regions. A conceptually

similar activation can be performed in the time

domain.

The computation of spatial and temporal saliency for

weather radar reflectivity images is described in the next

section.

3. WR-STS

A simplified functional block diagram of theWR-STS

computation process is shown in Fig. 2. The blocks of

this simplified diagram are described in detail next.

a. Multiscale decomposition and feature extraction

After interpolating the polar data collected by the ra-

dar into a Cartesian coordinate system (see Schvartzman

2015), we apply a multiscale decomposition and a spatial

feature extraction as illustrated in step 1 of Fig. 3. Storm-

scale andmesoscale weather phenomena can span a large

range of spatial scales, with scales as small as 30m for

F0 tornadoes (Brooks 2004) to an extension of more

than 100 km for very large thunderstorms or squall

lines. The multiscale decomposition is accomplished

using the steerable pyramids method (Freeman and

Adelson 1991; Simoncelli and Freeman 1995), which

performs a linear multiscale, multiorientation image

decomposition. In a nutshell, a directional wavelet

decomposition of the Fourier transform of the image is

used to obtain independent representations of scale

and orientation that are translation and rotation in-

variant. The reader is referred to Mallat (2008) for

more details about this technique.

The selection of the smallest scale is based on the

average size of tornado widths reported on the ground

for severe weather events with considerable damage

(F2 or higher). Brooks (2004) reported that approxi-

mately 50% of F2 tornadoes have a mean width of

500m. Thus, the smallest scale of this model is 500m,

and subsequent scales are obtained by doubling the

size of the previous one. To avoid spatial aliasing, the

resolution of the Cartesian radar grid is 250m. The use

of smaller scales might be problematic, since it could

result in undesired echoes (clutter, biological scat-

terers, noise, etc.) being highlighted. It was de-

termined (Schvartzman 2015) that using seven scales

(g1 5 500m, g2 5 1 km, g3 5 2km, g4 5 4 km, g5 5 8 km,

g6 5 16 km, and g7 5 32 km) is sufficient for identifying

regions of interest in weather radar reflectivity images.

FIG. 1. Notion of activation function adapted from Itti et al. (1998). (left) The visual

stimulus used as an input for the model. After extracting the features, (top center) the

intensity map has multiple equally high peaks, (top right) which after activation produce

a flat map. In contrast, (bottom center) the orientation feature map shows a larger peak

embedded in slightly smaller peaks, and (bottom right) activation enhances that peak

while suppressing all others.

FIG. 2. Functional block diagram outlining the main steps for the computation of WR-STS.
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FIG. 3. Illustration of the steps for the computation ofWR-STS (reduced number of scales and orientation

filters is used for simplicity). First, consecutive radar reflectivity images are scale decomposed, and their

intensity, contrast, and orientation features are extracted. Then, a spatial activation function is applied on

each scale, and single-feature maps are combined across all scales. Next, the feature maps are fused into

spatial saliency maps, which are used to compute the temporal feature. Finally, the four feature maps are

combined through a weighted average to produce the WR-STS map.
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This choice of scales will be supported by the results

discussed in section 5.

Once the image is represented at multiple scales (as

exemplified in Fig. 3 for two spatial scales), the feature

extraction step is performed. Three types of spatial

features are extracted at each scan time t, scale gl, and, if

applicable, orientation uj; these are denoted by FI(t, gl)

for intensity, FC(t, gl) for contrast, and FO(t, gl, uj) for

orientation. To simplify the notation and without loss of

generality, we assume a constant update timeT such that

t is an integer multiple ofT. In this work, only the field of

radar reflectivity is used, which can be considered as a

grayscale image. The reflectivity is expressed in dBZ

units because the logarithmic scale allows the model to

highlight relatively weaker but important features that

otherwise might be obscured. The intensity feature

FI(t, gl) for grayscale images is simply the grayscale

image matrix normalized in the range of [0, 1], corre-

sponding to the fixed range of possible reflectivity

values, namely, [232, 94. 5] dBZ. The contrast feature

is computed by running a 2D window over every pixel

of the image, taking a local neighborhood of pixels and

computing the standard deviation of the pixel values

in the neighborhood. For symmetry purposes, the

neighborhood window used here is a disk, and edge

effects are handled by replication. For the image with

the highest resolution, a 10-pixel-diameter disk is

used. For the next scale, the size of the window is re-

duced by one pixel in each dimension. The same is

done subsequently to coarser scales to compute the

contrast feature. The example in Fig. 3 shows only the

first and last scales and four orientations; however,

the WR-STS implementation uses seven scales and 16

orientations (Schvartzman 2015).

The orientation features can be derived from the

reflectivity image at each scale by convolving it with

Gabor filters oriented in specific directions. These

Gabor filters can approximate the receptive field im-

pulse response of orientation-selective neurons in the

primary visual cortex (Daugman 1985); therefore,

they are particularly suited for detecting features

oriented in a particular direction that visually stand

out from their surroundings. The convolution (de-

noted by +) between the scale-decomposed re-

flectivity images and the Gabor filter can be computed

as (Li and Gao 2014)

F
O
(t, g

l
, u

j
)5 jF

I
(t, g

l
)+G

R
(u

j
)j1 jF
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l
)+G

I
(u

j
)j,
(1)

where uj 5 j(1808/16) is the jth orientation. A Gabor

filter is the product of a sinusoid and a two-dimensional

Gaussian function; the real and imaginary parts of the

complex Gabor filter (GR and GI, respectively) applied

to the pixel (x, y) are defined as
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(3)

where l is the wavelength. The wavelengths used in

WR-STS are l5 1, 2, 4, 8, 16, 32, and 64, progres-

sively doubling to match the choice of scales. In other

words, because the pixel resolution is the same at each

scale, the filter kernel must be adjusted to match the

corresponding scale. A thorough description and char-

acterization of these filters are provided in Feichtinger

and Strohmer (1998).

b. Spatial activation and fusion

Following the scale decomposition and feature ex-

traction, the spatial activation is carried out. As dis-

cussed previously, the choice of activation function is

key in the performance of WR-STS, since its purpose is

to pick only uniquely salient attributes from the feature

maps. Because of the uncertainty typically present in

weather phenomena, the use of deterministic functions

would produce inconsistent results. Statistical methods

use covariances as the main tool for activation and are

usually very sensitive to contrast (large variances),

while information theory activations produce more

statistically robust results. The generality of the Shan-

non information metrics makes this class of functions

suitable for weather radar images, since these can

evolve into complex configurations that require statis-

tically robust activations.

Shannon’s entropy is defined in terms of probability

distributions and has many properties that agree with

the intuitive notion of what a measure of information

should be. In fact, the entropy is considered to be the

self-information of a signal. It can be shown that uni-

form probability functions have maximum entropy,

since the outcome of a realization of the experiment is

equiprobable for all the possible values of that random

variable. On the other hand, narrower probability

density functions are associated with less information,

since the outcome of the corresponding experiment is

more predictable.

The concept of entropy in a 2D image is exemplified in

Fig. 4 using a radar reflectivity image. The region with
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similar reflectivity values produces a relatively narrow

probability density function (top-left box) and therefore

can be thought of as having a more predictable spatial

structure. On the other hand, in a region with large re-

flectivity variation, the probability density function

(pdf) approximates a uniform distribution (bottom-left

box), implying there is more uncertainty (or more in-

formation) in that region. For WR-STS, feature activa-

tion is carried out by computing the entropy of all the

feature maps. That is, at each pixel of a feature map, the

pdf is approximated with a 50-bin, unit-summation

normalized histogram of the values inside a disk-

shaped window (same as the one used for the contrast

feature described previously). The entropy is computed

as (Cover and Thomas 2006)

S 5 2�
f

p( f ) log
2
p( f ) , (4)

where p(f ) is the normalized histogram of the feature

values inside the window.

The activation step produces one single-scale, single-

feature saliency map for each feature map: SI(t, gl) for

intensity, SC(t, gl) for contrast, and SO(t, gl, uj) for

orientation. These are fused across all scales to obtain

single-feature saliency maps: SI(t) for intensity, SC(t)

for contrast, and SO(t) for orientation (step 2 in Fig. 3).

To fuse the scales, first we linearly interpolate the

images to the grid with the highest resolution. Then,

for a given feature map, the pixel with maximum value

is taken across all scales and the result is the single-

feature spatial saliency map. Taking the maximum

ensures that single-scale salient regions are captured

when the multiscale images are aggregated. Single-

orientation maps are also activated through this pro-

cedure and are then combined across orientations by

averaging, since no particular orientation is favored.

Finally, the spatial saliency map is obtained by a

weighted average of the three single-feature spatial

saliency maps as

S(t)5
4S

I
(t)1 S

C
(t)1 2S

O
(t)

7
. (5)

The single-feature-map weights were fine-tuned in an

ad hoc way with the assistance of a NWS forecaster. The

forecaster was presented with three different weather

events (a snowstorm, a squall line, and a tornadic

supercell) and reviewed the reflectivity images from

three consecutive scans for each event. Then, with a

reasonable justification, the forecaster manually se-

lected the most meteorologically important regions.

Based on a qualitative interpretation of the relevance of

each feature, we adjusted the weights until the WR-STS

FIG. 4. Illustration of windowed computation of entropy for a weather radar reflectivity image (or intensity

feature FI). The entropy is a functional of the distribution and therefore depends only on the estimated probability

density function, p(FI).
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maps roughly agreed with the forecaster’s assessment.

Whereas this simplistic approach may be subject to in-

terpretation bias, we consider it sufficient for this initial

proof-of-concept implementation. Through a more sys-

tematic and extensive process involving several fore-

casters and other weather events, these weights could be

further refined. We leave this for future work.

c. Temporal activation

After obtaining the spatial saliency map, the next step

is the temporal activation (step 3 in Fig. 3). In this work,

mutual information (MI) is proposed as a means to

characterize the temporal evolution of weather echoes

in radar images. MI extends the notion of entropy and

measures the information one random variable contains

about another. Themutual informationM[S(t), S(t2T)]

of current and previous spatial saliency maps S(t) and

S(t2T) is computed as (Cover and Thomas 2006)

M[S(t), S(t2T)]5 �
st

�
st2T

p(s
t
, s

t2T
) log

2

p(s
t
, s

t2T
)

p(s
t
)p(s

t2T
)
,

(6)

where p(st) and p(st2T) are the marginal pdfs, and

p(st, st2T) is the joint pdf. As before, the pdfs are

approximated by normalized histograms of values in

running windows positioned over corresponding pixels

in the two saliency maps (i.e., the windows enclose the

same geographical area in both maps). The expression

M[S(t), S(t2T)] is the reduction in the uncertainty of

S(t) due to the knowledge of S(t2T). Note that if

M[S(t), S(t2T)]5 0, then there is no common infor-

mation between the saliency maps at different times;

that is, each saliency map conveys unique information.

To increase the robustness of the model, temporal sa-

liency is computed as

S
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(t)5 12 �
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�
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�
st22T

p(s
t
, s

t2T
, s
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) log
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, s
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)p(s

t
)p(s

t2T
)p(s

t22T
)
, (7)

where the second term on the right-hand side of this

equation is the MI of the current and two previous

spatial saliency maps. As intended, this expression

produces high values of temporal saliency for low values

of MI (and vice versa) because the MI is low in regions

with high temporal variations.

d. Spatiotemporal fusion

Although the temporal saliency map uses the spatial

saliency maps obtained from the weighted single-feature

spatial saliency maps, MI is a functional of the pdfs and

thus independent of the weights. Therefore, as a means to

fine-tune the performance of WR-STS by allowing in-

dependent weighting of the single-feature saliency maps,

the spatiotemporal saliencymap is computed as aweighted

average of SI , SC, SO, and ST as (step 4 in Fig. 3)

WR2 STS(t)5
4S

I
(t)1 S

C
(t)1 2S

O
(t)1 2S

T
(t)

9
. (8)

As mentioned before, these weights were experimentally

selected to achieve good agreement between regions

highlighted by WR-STS and those of meteorological

importance defined by a NWS forecaster. The map

obtained in the last step is the WR-STS map at time t,

which is designed to highlight regions with high spa-

tial and temporal changes. The WR-STS model pa-

rameters discussed in this section are summarized in

Table 1.

4. Application ofWR-STS to a tornado outbreak in
central Oklahoma

As reported by the NWSWeather Forecast Office, ‘‘a

tornado outbreak occurred over parts of northern and

central Oklahoma during the day on 24 May 2011, with

violent tornadoes devastating several communities. By

the end of the day, one EF-5, two EF-4, and two EF-3

tornadoes destroyed buildings, ripped up trees and

power poles, and unfortunately, resulted in 11 deaths

and 293 injuries’’ (NWS 2011). This weather event

produced a total of 12 tornadoes in Oklahoma. In par-

ticular, an EF-5 tornado that developed and touched

down in Canadian County became the strongest of them,

TABLE 1. Summary of the model parameters used in WR-STS.

Parameter Value/name

Interpolated grid size 1000 3 1000

Number of scales 7 (500m, 1 km, 2 km,

4 km, 8 km, 16 km, 32 km)

Number of orientations 16 (08, 11.258, 22.58, 33.758,
458, . . . , 168.758)

Spatial activation Entropy

Temporal activation Mutual information

Intensity map weight 4

Contrast map weight 1

Orientation map weight 2

Temporal map weight 2
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traveling through north of El Reno, west of Piedmont,

and across the north edge of Guthrie. It was on the

ground for almost 2 h (2050–2235 UTC) with a total

pathlength of 101 km and a maximum width of 1.6 km.

Nine people died as a result of this violent tornado and

over 180 were injured. The damage path of all of these

devastating tornadoes is shown in Fig. 5 (tracks of the

less damaging tornadoes where not surveyed and are

not displayed in the figure). The longest track is the one

that corresponds to the Canadian–Kingfisher–Logan

EF-5 (CKL EF-5) tornado. The two damage paths to

the south of the CKL EF-5 tornado path correspond

to the Grady–McClain–Cleveland EF-4 (GMC EF-4)

and the Grady–McClain EF-4 (GM EF-4) tornadoes.

These caused the death of one person and injured over

100 others.

By their nature, these damaging severe storms are in-

tense (strong reflectivity cores) and can evolve quickly in

time. It is expected that these types of convective storms

exhibit more features than nonconvective storms, and

that WR-STS will likely highlight structured, quickly-

evolving regions. To confirm this, WR-STS is computed

for the 0.58-elevation reflectivity images, and severe

weather warning polygons issued throughout the event

are superimposed to assess their correlation. This makes

sense because warning polygons indicate regions (of in-

terest) where severe weather is present or is likely to

strike in the near future. However, if the lead time of a

warning polygon is less than two update times (2T), then

WR-STS and warning polygons may not be completely

independent. Still, even in situations whereWR-STS and

warning polygons are based on common reflectivity

data, whereas WR-STS is based on three consecutive

reflectivity images only, the determination of warning

polygons involves multiple data sources (e.g., radar,

satellite, weather stations) and, more importantly, the

constantly evolving conceptual model of the forecaster at

the time of the warning (Waters 2007). Thus, good cor-

relation between warning polygons and WR-STS can be

used to infer the effectiveness with which WR-STS

captures regions with meteorologically important

echoes. Figure 6 shows reflectivity images spaced

about 30min apart (althoughWR-STS is computed on

scans spaced approximately 5min apart). The yellow

superimposed polygons are severe thunderstorm

warnings that were active at the time of the scan, and

the red polygons are tornado warnings that were also

active at the time. As a visual reference, white contour

lines delimiting regions with 0.5 or higher WR-STS

values are plotted on top of the reflectivity images.

The corresponding WR-STS maps are presented in

Fig. 7, with white 30-dBZ reflectivity contour lines

plotted on top.

At 1932:07 UTC (Figs. 6a and 7a), many convective

storm cells developed in western Oklahoma at about

160 km from the KTLX radar (Oklahoma City, near

Twin Lakes). Two severe thunderstorm warnings were

active at the time, although no tornado warnings had

been issued at that point in time. One storm cell was not

contained in a severe warning polygon at that time

(farthest one northwest). Looking at the WR-STS map,

it can be seen that both severe thunderstorm polygons

correspond to medium-to-high WR-STS values, while

the storm cell outside of the polygons corresponds to low

WR-STS values. Notice that since the ground clutter is

stationary (i.e., no temporal feature), its WR-STS is

usually low (Schvartzman 2015). Later, at 1957:54 UTC,

the storms continued to develop and two more severe

thunderstorm warnings were issued (Figs. 6b and 7b)

while the first two warnings remained active. Notice that

even though the storms on the north have intense re-

flectivity cores, their WR-STS is relatively low compared

to the southern storms, since the latter exhibit higher

temporal features.

FIG. 5. Damage path left by 6 of the 12 tornadoes (the strongest ones) on 24 May 2011. County

names mentioned in the text are shown for reference.
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At 2027:43 UTC (Figs. 6c and 7c), two of the most

recent severe thunderstorm warnings were still active,

and a third one was issued as an update for the farthest

storm located to the northwest. More importantly,

three tornado warnings were issued and were active at

the time of this scan. The storms for which these

warnings were issued exhibit strong rotation features.

WR-STS assigns very high values to the storm regions

within the tornado warning polygons, with a slightly

higher value assigned to the southernmost storm with a

maximum of 1. Notice that the WR-STS values within

severe thunderstorm warnings are considerably lower

than those in tornado warnings, corresponding to the

notion that tornadic storms produce more structured

and quickly evolving features.

Minutes before the data obtained by the scan shown in

Fig. 6d, at approximately 2050 UTC, a tornado formed

and became the CKL EF-5. Warnings were issued in

FIG. 6. Radar reflectivity scans of the tornadic storm on 24May 2011 obtained from the KTLX radar. Active tornado warning polygons

(red), severe thunderstorm polygons (yellow), and 0.5 or higherWR-STS contour lines (white) are overlaid on top of the reflectivity data:

(a) 1932:07 (b) 1957:54 (c) 2027:43 (d) 2057:33 (e) 2127:20 (f) 2157:04 (g) 2226:48, and (h) 2256:33 UTC.

FIG. 7. CorrespondingWR-STS maps for the reflectivity images in Fig. 6. Active tornado warning polygons (red), severe thunderstorm

polygons (yellow), and 30-dBZ reflectivity contour lines (white) are overlaid on top of the WR-STS maps: (a) 1932:07, (b) 1957:54,

(c) 2027:43, (d) 2057:33, (e) 2127:20, (f) 2157:04, (g) 2226:48, and (h) 2256:33 UTC.
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west-central Oklahoma. Figures 6d and 7d shows that

the previous three tornado warnings were still active

and a fourth one was issued. WR-STS values are con-

siderably higher in the last tornado warning polygon

issued in Canadian County compared to the other three

active warnings. In addition, a severe thunderstorm warn-

ing was issued for a storm cell to the southwest (outside of

Oklahoma), and it is actually not deemed as informative by

WR-STS. The reason for this is that the storm was very far

from the radar and therefore its features are not apparent.

At 2127:20 UTC (Figs. 6e and 7e), a new tornado

warning was issued for the CKL EF-5 tornado that was

crossing Canadian County, and several new severe

thunderstorm warnings were also issued. Once again,

the WR-STS values assigned to weather echoes inside

of the tornado warning polygons are noticeably higher

than the values for severe thunderstorm warning

polygons (which are also relatively high), even though

most of the storm cells have comparable reflectivity

values. At that moment, the CKL EF-5 tornado was

still violent, and another funnel cloud started to form

about 65 km to the south. Specifically, the storm that

later became the GMC EF-4 tornado (west-central)

was strengthening over the border between Caddo and

GradyCounties, whereWR-STS takes high values (around

0.75). Notice that the northernmost tornado warning

polygon does not correspond with high WR-STS values,

since this polygon was temporally obsolete at the time of

the scan (it was issued over 30min earlier; see Fig. 7d).

A tornado warning was issued at 2150 UTC for the

GMC EF-4 tornado, as can be seen in Figs. 6f and 7f. At

2157:04 UTC, as the CKL EF-5 tornado was weakening

over LoganCounty,WR-STS values also start decreasing,

while they increase considerably in the region of theGMC

EF-4 tornado that formed a little later, at approximately

2206 UTC. The analysis for Figs. 6g and 7g can be carried

out in a similar way. Finally, at 2256:33 UTC (Figs. 6h and

7h), theCKLEF-5 tornado had dissipated completely and

the GMC EF-4 tornado was starting to decay. WR-STS

indicates a highly informative region over McClain and

Cleveland Counties as the tornado crosses over. Because

of the distance of the southern storm cells to the radar,

many fine features are lost, and WR-STS computes only

relatively low values in that region. This is perhaps one of

the main limitations of WR-STS, reflecting the inherent

limitation ofweather radars to resolve small-scale features

as storms get farther away.

5. Performance analysis and validation of WR-STS

With the goal of evaluating the statistical performance

of WR-STS, we propose the use of archived severe

thunderstorm and tornado warning polygons issued by

NWS forecasters. These polygons were determined by

forecasters for regions in which hazardous weather would

likely take place in the near future. Nevertheless, we stress

that WR-STS is not designed to anticipate the occurrence

of severeweather but to assist in highlighting regionswhere

potentially hazardous weather is currently evolving.

High-reflectivity regions can be intuitively associated

with regions of meteorological importance, since severe

weather is often characterized by strong reflectivity

cores. In fact, WR-STS uses reflectivity (intensity) as

one of its spatial features. However, even though the

intensity feature is an important spatial component in

WR-STS, the other spatial and temporal components

add significant value to its skill in highlighting important

regions. In other words, regions of interest determined

by WR-STS are not just high-reflectivity regions. To

show this, the performance analysis is carried out on

both WR-STS and radar reflectivities.

For the case study presented in section 4, radar re-

flectivity andWR-STS values inside and outside the areas

determined by severe thunderstorm and tornado warning

polygons are recorded for every scan throughout the time

series, and normalized histograms (to an area of 1) are

computed for both reflectivity and WR-STS (Fig. 8). An

examination of these histograms reveals that it may be

easier to distinguish regions with meteorologically im-

portant echoes using WR-STS, since the normalized

histograms of values inside and outside warning polygons

are more separated. To quantify the statistical distance

between these normalized histograms, we use the total

variation distance. Whereas this measure is related to the

relative entropy (also known as the Kullback–Leibler

divergence), it has the important property of being a

distance metric on the space of probability distributions.

It is defined as (Sriperumbudur et al. 2009)

d(I,O) 5
1

2
�
x2V

jP
I
(x)2P

O
(x)j , (9)

where I and O are random variables over the same do-

main V, corresponding to the values inside and outside

the warning polygons, respectively (referred to as ‘‘in’’

and ‘‘out,’’ respectively). These random variables have

probability mass functions given by PI(x) and PO(x),

respectively, where x 2 V. Notice that the term inside

the summation on the right-hand side represents the

absolute difference between probabilities of each ran-

dom variable, resulting in the same outcome and it is

bounded between 0 and 1. For instance, if I and O are

statistically very similar, then their densities are almost

overlapped and d(I, O) will approach 0. On the other

hand, if I andO are statistically very different, there will

be little to no overlap between their densities, and
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d(I, O) will approach 1. In the context of classification,

the larger the total variation distance between classes,

the better the separation between them. Thus, by com-

paring the total variation distance of WR-STS and the

reflectivity inside and outside the polygons, we can as-

sess their relative skills at highlighting meteorologically

important regions. To this end, we proceed to determine

the total variation, using normalized histograms of re-

flectivity and WR-STS.

We compute normalized (unit area) histograms of

reflectivity and WR-STS to approximate their proba-

bility mass functions inside and outside the warning poly-

gons. Denoting the normalized histograms of reflectivity

as in and out by P̂Iz and P̂Oz
, respectively, we compute

d(Iz, Oz)5 0. 407. This means that 40.7% of the area

below the curves in Fig. 8a is not shared, while 59.3% is.

Similarly, denoting the normalized histograms ofWR-STS

by P̂Is and P̂Os
, we compute d(Is, Os)5 0. 709. This in-

dicates that 70.9% of the area below the curves in Fig. 8b

is not shared, while 29.1% is. There is a substantial

difference between the total variation distance of re-

flectivity andWR-STS, which confirms that the additional

features incorporated into WR-STS make it more skilled

than reflectivity only. These normalized histograms are

used to compute receiver operating characteristics (ROC)

curves for reflectivity and WR-STS, which are shown in

Fig. 8c, and to allow for a direct comparison of the re-

lationship between the true and false positives of each

technique. As the results show, WR-STS always attains

a higher rate of true positives at a lower rate of false

positives. For example, for a true positive rate of 90%,

WR-STS has a false positive rate of approximately

20%, whereas reflectivity has a false positive rate of

65%. In addition to the normalized histograms and

the ROC curves, a time-composite WR-STS map with

superimposed warning polygons is shown in Fig. 8d. The

map is computed by taking the maximum WR-STS

throughout the time series for each resolution volume.

Because WR-STS was designed to highlight regions

with salient intensity, contrast, orientation, and temporal

features, and tornadoes produce these kinds of fea-

tures in radar reflectivity images, the highlighted path

shown in Fig. 8d is, as expected, well correlated with

tornado tracks.

It can be inferred from this case study that WR-STS

could be used to automatically highlight regions of in-

terest that contain meteorologically important echoes.

Whereas the results presented above correspond just

to a single severe weather event, they motivate the study

of a larger number of cases. Significant severe weather

FIG. 8. Selective ability of WR-STS: (a) normalized histograms (unit area) of reflectivity

inside and outside the warning polygons. (b) As in (a), but for WR-STS; (c) ROC curves of

reflectivity and WR-STS; and (d) time-composite WR-STS.
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events that occurred in the last few years in the Midwest

United States were chosen for this study, where cases

after 1 October 2007 were selected because storm-based

polygon warnings became operational after that date.

Table 2 presents the basic characteristics of the selected

severe weather events. For each event, a time series of

reflectivity data from the lowest elevation scan (0.58) was
obtained from the National Climatic Data Center1 (now

known as NCEI; radar reflectivity) and the corresponding

warning polygons from the NWS severe weather ar-

chives.2 The second column in Table 2 indicates the name

of the WSR-88D radar site. Dates and periods of the ob-

servations are specified in the following two columns. The

last column specifies the overall type of severe weather

event. It should be noted that the spatial and temporal

characteristics of these severe storms are very different.

More specifically, there are four isolated supercell cases

(1–4), four squall lines with embedded storm cell cases

(5–8), and two tornado outbreak cases (9 and 10).

Table 3 provides detailed information about the

warnings issued throughout the period, as well as the

performance obtained for reflectivity and WR-STS.

Polygon count represents the number of thunderstorm

warning polygons issued in the period, which were used to

compute the performancemetrics.Warning avg size (km2)

and Warning avg duration (min) express the average sur-

face and average time span of the warnings polygons, re-

spectively. Columns five and six provide an intuitive idea

of the intensity of these storms through the average

maximum reflectivity (dBZ) and average reflectivity core

size (km2), respectively, of the storms encompassed by the

warning polygons. Both are taken at an elevation of 0.58,
where a reflectivity threshold of 35dBZ is used to define

the cores (Johnson et al. 1998). Notice that the tornado

outbreaks have the largest number of warnings issued.

Moreover, they also have the largest average maximum

reflectivity and average reflectivity core sizes. The num-

ber of warnings issued for squall lines and isolated su-

percells is variable, but the squall-line cases tend to have

larger reflectivity cores and lower average reflectivity

values than the isolated supercells due to their large

spatial extent. Complex severeweather systems like these

are of particular interest in this work since they help re-

veal the skill of WR-STS.

The total variation distance of the normalized histo-

grams is given in columns seven and eight of Table 3.

The results show that the total variation distance ofWR-

STS exceeds that of reflectivity for all the cases. Notice

that the difference is always larger than 0.2, which shows

that in and out WR-STS histograms are separated by at

least 20%more than those corresponding to reflectivity.

The mean total variation distance of reflectivity is

39.2%, while the mean for WR-STS is 71.2%. This is

strong corroboration to the case study findings thatWR-

STS is particularly skilled in highlighting regions of

meteorological importance characterized by warning

polygons. In addition, notice that the lowest total vari-

ation distance for WR-STS is 0.5695 (case 5), which

corresponds to a tornado outbreak case. This relatively

low performance is due to the higher complexity of the

storms in this case and the large number of warnings

issued in the time period.

As mentioned before, warning polygons are regions

determined byNWS forecasters inwhich severeweather is

likely to strike. In this paper, warning polygons were used

as ground truth to analyze the performance of WR-STS.

However, the use of warning polygons as a validation

method has some limitations. First, since the polygons are

predicting the occurrence of severe weather, they do not

always coincide with the region where severe weather

actually takes place. In other words, in a few complex

cases, the polygons may be incorrectly placed. Second,

TABLE 2. WSR-88D reflectivity data from severe weather events used to evaluate the performance of WR-STS. Radars are as follows:

KTLX near Twin Lakes, OK; KFWS near Fort Worth, TX; KHTX near Huntsville, AL; KOAX near Omaha, NE; KLSX near St. Louis,

MO; KILX near Lincoln, IL; KLOT near Chicago, IL; and KEAX near Kansas City, MO.

Radar Date Period (UTC) Storm type

1 KTLX 20 May 2013 1904–2158 Isolated supercells

2 KFWS 3 Apr 2014 2115–0211 Isolated supercells

3 KLSX 7 Apr 2015 1203–1601 Isolated supercells

4 KLOT 22 Jun 2015 0003–0303 Isolated supercells

5 KHTX 28 Apr 2014 2003–0100 Squall line with multicells

6 KTLX 25 Mar 2015 2202–0212 Squall line with multicells

7 KILX 7 Jun 2015 2029–0101 Squall line with multicells

8 KEAX 6 Jul 2015 1901–2303 Squall line with multicells

9 KTLX 24 May 2011 1902–2356 Tornadic supercells

10 KOAX 3 Jun 2014 2000–2301 Tornadic supercells

1 http://ncdc.noaa.gov/.
2 https://nwschat.weather.gov/lsr/.
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because severe weather may develop quickly and because

the temporal resolution of the precipitation VCPs is about

5min, forecasters may miss the event and therefore no

polygon is issued in time.According toBarnes et al. (2007),

the national false alarm ratio (FAR) for tornado warnings

in 2003was of 0.76,meaning that only oneout of every four

tornadoes warnings were verified.

Despite these limitations, it can be inferred from this

analysis that high WR-STS values are in good agree-

ment with regions of meteorological importance as de-

fined by NWS forecasters. However, WR-STS does not

have the ability to anticipate the occurrence of severe

weather (as do forecasters), but it could assist them in

complex weather scenarios. A computer-assisted human

decision-making process could reduce the time spent

manually looking at radar data from each elevation

angle and increase the time available for looking at the

most important storm regions. In turn, havingmore time

to examine those storms could provide more confidence

and aid in the warning decision process.

6. Conclusions

This paper explored the first application of a bio-

inspired model of attention (referred to as saliency) to

weather radar reflectivity images. Saliency models have

been used in many other fields to model the human at-

tention system to better allocate the limited resources on

relevant information. The proposed model—Weather

Radar Spatiotemporal Saliency (WR-STS)—accounts for

spatial and temporal features present in radar reflectivity

images. The spatial features include the intensity, con-

trast, and orientation at a number of different spatial

scales. Aside from displaying regions of high information

content, spatial features highlight regions with high me-

teorological information. Temporal features are obtained

by processing time series of spatial-saliency maps using

mutual information. In general, we postulate that

WR-STS could aid forecasters in focusing their attention

by spending more time analyzing regions of meteoro-

logical importance, herein defined as weather echoes

confined in severe thunderstorm and tornado warning

polygons issued by NWS forecasters. It should be noted

that, depending on the application, regions of meteo-

rological importance could be defined in different ways

(e.g., snowstorms or drylines); we leave this extension

of WR-STS for future work.

It was shown through a case study that convective

storms, which display distinctive spatial and temporal

features, lead to higher WR-STS values. The analysis

of a convective severe weather environment in which

multiple tornado-producing thunderstorms were pres-

ent revealed consistency between high WR-STS values

and severe thunderstorm and tornado warning poly-

gons issued by NWS forecasters. It was shown that

WR-STS generally assigns medium-to-high values to

regions in which severe thunderstorm warnings are

active. These results were corroborated by analyzing

10 diverse cases using the same methodology. That is,

based on a statistical-distancemetric,WR-STSwas shown

to be significantly better than reflectivity at highlighting

regions of meteorological importance.

Whereas WR-STS appears to be a promising tool to

analyze weather radar images, it is still in its infancy, and

this initial proof-of-concept implementation has a few

limitations. First, image artifacts, such as beam blockage

and anomalous propagation clutter, can cause WR-STS

to highlight regions not necessarily of meteorological

importance. Second, a relatively high temporal reso-

lution and good azimuthal sampling are needed by this

model to better focus on regions of interest. Perhaps

one of the most important limitations of WR-STS is

TABLE 3. Warning polygon characteristics and performance metrics for the 10 severe weather cases in Table 2. Polygon count is the

number of warning polygons active through the time period, avg. maximum reflectivity (dBZ) is the average maximum reflectivities

recorded through the time period, and average core size (km2) is for the reflectivities above 35 dBZ in the 0.58 cut only. d[I(z), O(z)] and

d[I(s), O(s)] are the total variation distances of the normalized histograms for reflectivity and WR-STS, respectively.

Polygon count

Warning avg size

(km2)

Warning avg

duration (min)

Avg max

reflectivity (dBZ)

Avg core

size (km2) d[I(z), O(z)] d[I(s), O(s)]

1 12 1327.0 39.2 49.2 855.9 0.3527 0.5764

2 16 2227.2 32.5 61.1 1031.9 0.3327 0.7784

3 7 1706.7 43.2 60.1 730.2 0.5065 0.8231

4 6 1969.3 38.6 56.4 434.5 0.2384 0.6133

5 10 861.8 29.0 30.4 560.5 0.5485 0.7593

6 22 1973.1 38.5 55.9 1614.1 0.3540 0.7992

7 24 1475.2 35.9 52.9 2061.5 0.3987 0.6378

8 6 2277.6 43.6 37.8 895.1 0.4769 0.8584

9 27 2453.1 29.8 64.5 2402.4 0.4068 0.7086

10 31 2229.0 35.6 72.3 2949.7 0.3044 0.5695
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related to its diminishing capability as the range from

the radar increases. As the range from the radar in-

creases, the radar resolution volumes become larger

and many spatial features of severe storms are in-

herently obscured. This results in a significant re-

duction of WR-STS values and could lead to missing

meteorologically important regions that are far from

the radar.

Even though preliminary results are promising,

there are a number of research questions that need to

be explored before WR-STS could be considered for

operational use. First, the proof-of-concept WR-STS

uses images from only the lowest elevation scan. Using

volumetric data could provide relevant information

about higher levels of the atmosphere, and they could

aid WR-STS in more accurately narrowing down re-

gions where severe weather phenomena are de-

veloping. For example, mesocyclones usually develop

at midlevels (Stumpf et al. 1998) and their initiation

would generally not be seen at the lower elevations in

radar images. Volumetric saliency is an active, ongoing

research field and it is in its developing stages (Shen

et al. 2016). Second, the model presented in this work

uses only radar reflectivity images. This can largely

limit the extent to which WR-STS is able to identify

features in the radar data, since several important sa-

lient features may be present in other radar fields (e.g.,

mesocyclone signatures in radial velocity images). In-

corporating the Doppler moments (radial velocity and

spectrum width) and the polarimetric variables could

provide the model with more information, making

WR-STS more robust. Last, a study involving fore-

casters using eye-tracking tools (Bowden et al. 2016)

could be used to validate the performance of WR-STS

more systematically and accurately.

Although the number of cases analyzed is limited,

we can conclude that WR-STS has the potential to

consistently highlight regions of meteorological in-

terest. In particular, WR-STS could aid in discerning

meteorologically important weather echoes during

complex severe weather situations, assisting human

forecasters in the warning decision process by re-

ducing the time spent examining all available radar

data, and increasing the time available for analyzing

the most important storm regions.
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